DIGITAL LOGIC DESIGN

Course Code	19EE3402	Year	II	Semester	II
Course	Program	Branch	EEE	Course Type	Theory
Category	Core				
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous	30	Semester	70	Total Marks:	100
Internal		End			
Evaluation:		Evaluation:			

	Course Outcomes						
Upon	successful completion of the course, the student will be able to						
CO1	Compare the various features of Binary codes.						
CO2	Simplify Boolean functions using K-map & implement them using Logic gates.						
CO3	Design and Realize various Combinational circuits for the given specifications.						
CO4	Analyze and Design Clocked Sequential circuits.						
CO5	Construct Logic gates using CMOS.						

Mapping	Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)													
Note: 1- W	Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation													
* - Average	* - Average value indicates course correlation strength with mapped PO													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2							1	2	1
CO2	3	3	2	2	2							1	2	1
CO3	3	3	2	2	2							1	2	1
CO4	3	3	2	2	3							1	2	1
CO5	3	3	2	2	3							1	2	1

	Syllabus				
Unit No.	Contents	Mapped CO			
Ι	Binary Codes : Signed Binary Numbers, Complements, Binary Codes, Error detection and correction code, Binary Logic. Boolean Algebra : Basic definitions, Axiomatic definition of boolean algebra, Basic theorems and properties of boolean algebra, Boolean functions, Canonical and standard forms, Digital logic gates.	CO1			
II	Simplification of Boolean functions : The map method, Four-variable map, Five-variable map, Tabulation Method, Product of sums simplification, Don't-care conditions, NAND and NOR implementation, Exclusive-or function.	CO2			
III	Combinational Logic: Combinational circuits, Analysis procedure, Design procedure, Binary Adder-Subtractor, Decoders, Encoders, Multiplexers, De- Multiplexer Memories: Random-access memory, Memory decoding, Read-only memory.	CO3			

IV	Synchronous Sequential Logic: Sequential circuits, Latches, Flip-Flops,								
	Analysis of clocked sequential circuits, State reduction and assignment,								
	Design procedure								
V	Registers and Counters: Registers, Shift registers, Ripple counters,	CO5							
	Synchronous Counters, Ring counter.								
	Digital Integrated circuits: Special characteristics, Complementary MOS								
	(CMOS), CMOS transmission gate circuits.								

Learning Resources

1. Michael D. Ciletti, M. Morris Mano, Digital Design, 4/e. Pearson Education, 2007.

Reference Books

Text Books

1. ZviKohavi, Switching and Finite Automata Theory, 2/e, Tata McGraw-Hill Education, 2008.

2. John F. Wakerly, Digital Design Principles and Practices, 4/e, Pearson Education, 2008.

- 3. Frederick J. Hill and Gerald R. Peterson, Introduction to Switching Theory and Logic Design, 3/e, John Willey and Sons, 1981.
- 4. Charles Roth, Jr., Larry Kinney, Fundamentals of Logic Design, 7/e, Cengage Learning, India, 2013.

e- Resources & other digital material

1. http://www.ece.ubc.ca/~saifz/eece256.html

2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Guwahati/digital_circuit

/frame/index.html